[4 + 2]C ycloaddition of indole derivatives with bismaleimides: a route to new biscarbazoles

U If Pindur,* E ugenia G onzalez and Farokh M ehrabani

Institute of Pharmacy, Department of Chemistry and Pharmacy, U niversity of M ainz, D-55099 M ainz, Germany

N ew results for the reaction of in situ generated N -acylindole-2,3-quinodimethanes and donor-/acceptorsubstituted 3 -vinylindoles with some bismaleimides are described. By a [4 + 2]cycloaddition process, a variety of biscarbazoles are formed endo-selectively. These conformationally flexible molecules constitute a new class of compounds believed to have potential as D N A minor groove binding ligands.

Introduction

In recent years D NA minor groove-binding ligands possessing pronounced sequence specificity for the oligonucleotide matrix derived from natural sources or from synthesis have often been studied because of their sequencerecognizing ability, their ability to control transcription processes in the presence of DNA binding proteins and, on the molecular level, for the elucidation of binding modes and of specific structural parameters. ${ }^{1-3}$ Some outstanding examples of these ligands with pronounced antitumour activity are distamycin A $\mathbf{1}^{3,4}$ or (+)-CC $1065 \mathbf{2}^{3,5}$

Distamycin A

(+)-CC-1065
respectively. Both compounds are able to adopt a convex and helical conformation and thus bind to the minor groove of DNA by fitting the helical curvature of the DNA ('isohelicity ${ }^{3}$). The complexes formed are stabilized by hydrogen bonds, and additionally by electrostatic, van der Waals and hydrophobic forces. ${ }^{3}$ A dditionally, the cyclopropane moiety of drug 2 is able to alkylate the N-3 of adenine in double-stranded DNA. ${ }^{5}$ With these leading drugs in mind and additionally considering the DNA intercalative potential of anellated carbazoles, ${ }^{3,8}$ we have now focused our synthetic attention on the structurally related biscarbazoles of type 5 and $\mathbf{7}$ (Schemes 1 and 2) or the partially hydrogenated analogues thereof. On the basis of our
investigations on pericyclic reactions to give carbazole derivatives and carbazole alkaloids, ${ }^{6-8}$ the Diels-A Ider reactions of appropriate indole-2,3-quinodimethanes $\mathbf{3}$ or 3 -vinylindoles 6 with some bisdienophiles as linking structural elements represents an interesting strategy leading to these new compounds on the basis of retrosynthetic analysis (Schemes 1 and 2).

5
$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{SO}_{2}, \mathrm{CO}$
$\mathrm{R}=\mathrm{Bz}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{Ac}$

3

Scheme 1
In this context, the Diels-Alder reactions of N -benzoyl-indole-2,3-quinodimethane with some mono dienophiles and a bisdienophile were earlier reported by our group. ${ }^{9-11}$ Although the general success of this cycloaddition strategy has been documented fairly well, continued investigation of this type of reaction has particular interest in heterocyclic and medicinal chemistry. Thus, in continuation of these studies on pericyclic reactions with indole derivatives, we report some new DielsA lder reactions of in situ generated N -substituted indole $2,3-$ quinodimethanes 3 and of 3 -vinylindoles 6 with several bismaleimides 4 according to the strategy outlined in Schemes 1 and 2. The scope and limitation of this route are now being explored in respect of the flexibility of the reactant functionalities. The stereochemistry of the primary [4+2]cycloadducts

7
$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{CO}, \mathrm{SO}_{2}$
$\mathrm{R}^{2}=\mathrm{Me}, \mathrm{OMe}, \mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{R}^{1}=\mathrm{Me}, \mathrm{SO}_{2} \mathrm{Ph}$

6

Scheme 2
obtained were investigated in detail to rationalize the reaction mechanism. In a further study, the conformational properties of the new biscarbazoles to form a helical shape for optimal DNA minor groove binding and/or DNA intercalation ${ }^{1,3}$ were investigated. In this context the present paper presents some preliminary results.

Results and discussion

Synthetic aspects

The N -substituted indole-2,3-quinodimethanes 3a-c were generated in situ from the respective N-substituted 2,3-bis(bromomethyl)indoles 8a-c in the presence of sodium iodide via the 2,3 -bis(iodomethyl) derivative, in accordance with the method we have already reported, ${ }^{10-11}$ but with some variations in the reaction conditions. In a molar ratio of $2: 1$ of $\mathbf{3}$ and $\mathbf{4}$, the indole-2,3-quinodimethanes $\mathbf{3}$ were readily captured by the bismaleimides 4a-c to give rise to double Diels-A Ider adducts $9 \mathrm{a}-\mathrm{i}$ with two pyrrolo[b]anellated carbazole structures in $60-$ 70% yield. In all cases, the meso forms were produced (TLC reaction control supported by HPLC analysis; see also structural aspects).

In the case of the Diels-Alder reactions of 3 -vinylindoles 6 a-c with bismaleimides 4 , we expected the formation of new pyrrolo[a]anellated biscarbazoles of type 7, with a more convex molecular structure. The respective 3 -vinylindoles $6 \mathrm{a}-\mathrm{c}$ were readily available from a known W ittig procedure developed by us. ${ }^{8}$ Thus, the 3 -isopropenyl-1-phenylsulfonyl-1H-indole 6 a reacted stereoselectively with the bismaleimide 4 a in a $2: 1$ ratio at room temperature to furnish the endo,endo-bis and endo-mono-[4 + 2]cycloadducts 10a and 11a. Similarly, the E/Z mixture (ratio $2: 1$) of the 3 -vinylindole $\mathbf{6 b}$ also reacted stereoselectively with the bismaleimide $\mathbf{4 a}$ at room temperature to give a mixture of double and mono endo-D iels-A Ider products $\mathbf{1 0 b}$ and $\mathbf{1 1 b}$. The results confirm that the E-isomer of $\mathbf{6 b}$ should be the more reactive isomer, because the E stereochemistry is preserved formally in the cycloadducts. ${ }^{6}$ Furthermore, the selective reaction of the mono cycloadduct 11b with the corresponding vinylindole $\mathbf{6 b}$ was monitored by TLC and the formation of the biscarbazole 10b from the monocarbazole 11b could be detected.
The electronically less reactive 3 -vinylindole $\mathbf{6 c}$ reacted with the bisdienophile 4a only under reflux in chloroform to afford exclusively a double Diels-A Ider cycloadduct 12. In this case,

8 R 3 R
a $\mathrm{Bz} \quad$ a Bz b $\mathrm{SO}_{2} \mathrm{Ph}$ b $\mathrm{SO}_{2} \mathrm{Ph}$
c Ac
c Ac

meso- $\mathbf{9}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}
X	CH_{2}	CH_{2}	CH_{2}	SO_{2}	SO_{2}	SO_{2}	CO	CO	CO
R	Bz	$\mathrm{SO}_{2} \mathrm{Ph}$	Bz	Bz	$\mathrm{SO}_{2} \mathrm{Ph}$	Ac	Bz	$\mathrm{SO}_{2} \mathrm{Ph}$	Ac

 $6 \mathrm{R}^{1} \quad \mathrm{R}^{2} \quad \mathrm{R}^{3}$ a $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{Me} \quad \mathrm{H}$ b $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{H} \quad \mathrm{OMe}(E / Z=2: 1)$ c $\mathrm{Me} \quad \mathrm{H} \quad \mathrm{CO}_{2} \mathrm{Me}(E)$

meso-10 $\mathrm{R}^{1} \quad \mathrm{R}^{2} \quad \mathrm{R}^{3}$
a $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{Me} \quad \mathrm{H}$
b $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{H} \quad \mathrm{OMe}$

$11 \mathrm{R}^{1} \quad \mathrm{R}^{2} \quad \mathrm{R}^{3}$
a $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{Me} \quad \mathrm{H}$
b $\mathrm{SO}_{2} \mathrm{Ph} \quad \mathrm{H} \quad \mathrm{OMe}$
the primarily formed cycloadduct undergoes double-bond isomerization to give rise to the dimeric and 'indolized' carbazole $\mathbf{1 2}$ by a formal [1,3]-H shift in the cycloadduct primarily formed.

Structural aspects

From the double Diels-Alder adducts $\mathbf{9}$, a maximum of 16 stereoisomers is possible by formation of 4 stereocentres. On the basis of cis-selectivity in the repetitive D iels-A Ider step, ${ }^{6}$ a total of 3 stereoisomers would be expected: a meso form with C_{5}-symmetry and a pair of enantiomers with C_{1}-symmetry.

meso-12

However, from the Diels-Alder reaction of the 3 -vinylindoles $\mathbf{6 a}$ and $\mathbf{6 c}, 6$ or in the case of the β-methoxy substituted educt 6b, 8 new stereocentres are generated in the products. Thus, a theoretical maximum of 64 or 256 stereoisomers is possible with all combinations. In the reaction of the 3 -vinylindoles $\mathbf{6 a}$ and $\mathbf{6 c}, 2$ meso forms with C_{s} and 6 pairs of enantiomers with C_{1}-symmetry could be formed. In the Diels-A Ider reaction of the β-methoxy substituted 3 -vinylindole $\mathbf{6 b}$, 4 meso forms (C_{s}) and 28 pairs of enantiomers $\left(\mathrm{C}_{1}\right)$ are to be expected. H owever in accordance with the Diels-Alder cis-selectivity and endostereoselectivity and on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{M}$ R investigations ($600 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}, 400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ and $100.6 \mathrm{M} \mathrm{Hz}^{13} \mathrm{C} \mathrm{N} \mathrm{M} \mathrm{R}$ spectra exhibit only one set of signals) we are sure, that in all cases meso forms of biscarbazoles $\mathbf{9 , 1 0}$ and $\mathbf{1 2}$ are produced under the given conditions as main products.
The constitution of the [b]- and [a]-anellated biscarbazoles 9 , 10 and $\mathbf{1 2}$ and monocarbazoles $\mathbf{1 1}$ was first of all elucidated in more detail, by routine high resolution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectroscopy. The stereochemistry of compounds 9-12 was established by detailed NMR studies and by comparison of NMR data previously reported for similar stereo compounds of anellated carbazoles. ${ }^{6,713-15}$ Proton-proton decoupling experiments, spin-echo experiments, 1D NOE studies and application of several 2D NMR techniques allowed unequivocal characterization of all the compounds.

For example, in the case of the Diels-A Ider products 9 , only one set of signals is formed for the two pyrrolo[b]carbazole moieties, even in the $600 \mathrm{MHz}{ }^{1} \mathrm{H} N \mathrm{MR}$ spectra. On the basis of symmetry considerations, the meso form is thus valid. The two-proton ABX-spin systems in both cyclohexene rings were differentiated by NOE studies (Fig. 1) in combination with H,H-COSY, H,C-COSY and HMBC experiments. A coupling constant between $3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}$ of $8.5-8.9 \mathrm{~Hz}(600 \mathrm{M} \mathrm{Hz})$ confirms the cis configuration in all carbazoles 9 . This value is fairly supported by the computer-generated model (AM 1 geometry ${ }^{18}$) for compound 9c (Fig. 1) using the A ltona equation ${ }^{16}$ [dihedral angle $\mathrm{H}-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(10 \mathrm{a})-\mathrm{H}=13.8^{\circ}$] (calculated value J $=7.8 \mathrm{~Hz}$). Additionally, in the case of the biscarbazole 9 c the six aliphatic proton spin system in both anellated carbazole rings was simulated by the RACCOON program. ${ }^{20}$ For example the calculated coupling constant between $3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}$ of 8.8 Hz on the basis of correspondence of experimental and theoretical frequencies and relative intensities in the spectrum fairly complete the configurational analysis of this new class of compounds.

In the case of pyrro[a]anellated biscarbazoles 10 and 12, and monocarbazoles 11, it is to be expected that the $10 \mathrm{~b}-\mathrm{H}$ and $3 \mathrm{a}-$ H would be cis disposed due to the nature of a concerted DielsA Ider reaction. The relatively low coupling constants, $J_{100,3 a}$ of $8.2-8.9 \mathrm{~Hz}$, are consistent with the cis assignment. Vicinal coupling constants, $\mathrm{J}_{100,10 \mathrm{a}}$ of $4.8-6.0 \mathrm{~Hz}$ for compounds 10 and 11 established that the $10 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}$ are also orientated cis and therefore the cycloadditions were endo for all reactions studied. These coupling constant values are also supported fairly well by computer-generated model of molecule 10a (Fig. 1 AM 1 calculations ${ }^{18}$) using the A ltona equation ${ }^{16}\left[\mathrm{~J}_{100,3 \mathrm{a}} \mathrm{calcu}\right.$ lated value $=8.0 \mathrm{~Hz}$ for dihedral angle $\mathrm{H}-\mathrm{C}(10 \mathrm{~b})-\mathrm{C}(3 \mathrm{a})-$ $\mathrm{H}=8^{\circ} ; \mathrm{J}_{10 \mathrm{~b}, 10 \mathrm{a}}$ calculated value $=4.68 \mathrm{~Hz}$ for dihedral angle

Fig. 1 AM 1-minimized local conformation of biscarbazole 9c (A) and biscarbazole $10 a(B) .^{18,19} \mathrm{NOE}$ and some coupling constants ${ }^{20}$ are given for constitutional and configurational analysis. Only some relevant hydrogen atoms are depicted in the formula.
$\left.\mathrm{H}-\mathrm{C}(10 \mathrm{~b})-\mathrm{C}(10 \mathrm{a})-\mathrm{H}=44.1^{\circ}\right]$. These proton assignments are also in agreement with the NOE enhancement observed, e.g. for derivative 10a. Fig. 1 shows the high diagnostic value of the ${ }^{1} \mathrm{H}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NOE}$ measurements, performed for unequivocal clarification of the relative configuration of the cycloadducts. The important NOE observed between 10b-H and 3a-H for compound 10a is indicative of a cis configuration. Furthermore, this is accompanied by a very strong NOE between 10bH and the downfield 10a-H and the strong NOE detected is indicative of a $10 \mathrm{~b}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}$ cis relationship.
Construction of Dreiding models of the biscarbazoles 9,10 and $\mathbf{1 2}$ and preliminary calculations of some conformational families by the molecular mechanics method ${ }^{17}$ revealed that these compounds are able to adopt a helical conformation with the potential to bind into the minor groove of DNA. In an expanded project, further studies involving incorporation of several other substituents in the carbazole domain and in the 'bridge' of the molecules (including dehydrogenations) ${ }^{21,22}$ are being worked on. DNA-binding studies, computer molecular modelling ${ }^{23}$ and cell biological investigations are planned in the future to establish the structure-activity relationships of this new class of compounds. ${ }^{3}$

Experimental

G eneral details

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature on Bruker AC 200, 400 and Bruker AM X 600 spectrometers
using $\mathrm{M} \mathrm{e}_{4} \mathrm{Si}$ as internal reference; J values are given in Hz . The abbreviation pt refers to pseudo triplet (overlapped dd). The EI (70 eV) mass spectra were recorded on a Varian M AT 7 spectrometer and FD mass spectra were measured on a Varian CH 7a spectrometer. Ionisation modes are indicated in parentheses Elemental analyses were performed using a Carlo Erba Strumentazione 1106 apparatus. M ps were measured with an Electrothermal 8200 instrument. Flash column chromatography was performed on M erck 60 silica gel (particle size: 0.040-0.063 mm). HPLC was performed on a Merck Hitachi L-6200 instrument with a LiChrospher ${ }^{\circledR}$ R P-18 ($5 \mu \mathrm{~m}$), $250 \times 4 \mathrm{~mm}$ analytical column using as eluent methanol-water (4:1). The light petroleum used boiled in the range $40-60^{\circ} \mathrm{C}$. All reactions were performed in highly pure, anhydrous solvents under argon atmosphere. The yields given refer to analytically pure compounds. Substantial product loss occurred during chromatographic work-up.

G eneral procedure for the preparation of compounds 9

To a solution of the appropriate bismaleimide 4 (0.22-1.45 mmol) and powdered sodium iodide (200 mg) in dimethylformamide or dimethoxyethene was added a solution of 2,3bis(bromomethyl)indole 8 ($0.45-2.9 \mathrm{mmol}$) in dimethylformamide or dimethoxyethane The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 1 h after which it was treated with sodium thiosulfate and then filtered. The filtrate was concentrated to a volume of $5-10 \mathrm{ml}$ under reduced pressure and the residue obtained was washed with water to give a precipitate. This was filtered off and washed with methanol. The resulting residue was purified by flash column chromatography using light petroleum-ethyl acetate as eluent (ratio 1:2).

meso-N, \mathbf{N} '-M ethylenedi-p-phenylenebis(5-benzoyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9a

This compound was obtained from in situ generated N -benzoylindole-2,3-quinodimethane 3 a from N -benzoyl-2,3bis(bromomethyl) indole $8 \mathrm{a}(1.0 \mathrm{~g}, 2.45 \mathrm{mmol})$ as starting educt and the bismaleimide $4 \mathrm{a}(400 \mathrm{mg}, 1.11 \mathrm{mmol})$. The crude product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield $60 \%(1.25 \mathrm{~g}), \mathrm{mp} 228-233^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{C}, 77.33$; $\mathrm{H}, 4.15 ; \mathrm{N}, 6.68 . \mathrm{C}_{55} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, 77.51; H, 4.74; N , $6.57 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 3.03-3.10\left(4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{~J} 16.6\right.$ and $^{3}{ }^{3}$ 8.4, $2 \times 10-\mathrm{H} \beta$ and $10-\mathrm{H} \alpha$), 3.28-3.52 ($6 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \beta$, $2 \times 10 \mathrm{a}-\mathrm{H}$ and $2 \times 3 \mathrm{a}-\mathrm{H}$), $3.92-3.96\left(4 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{j} 18.9,2 \times 4-\mathrm{H} \alpha\right.$ and $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 7.01-7.09$ ($4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.37,2 \times 2 \mathrm{H}$-phenyl), 7.11-7.26 (12H, m, $2 \times 2 \mathrm{H}$-phenyl, $2 \times 8-\mathrm{H}, 2 \times 7-\mathrm{H}, 2 \times 9-\mathrm{H}$ and $2 \times 6-\mathrm{H}), 7.46-7.50\left(4 \mathrm{H}, \mathrm{t}, 2 \times 3^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 5^{\prime}-\mathrm{H}\right), 7.61-$ $7.64\left(2 \mathrm{H}, \mathrm{dd}, 2 \times 4^{\prime}-\mathrm{H}\right)$ and $7.65-7.67\left(4 \mathrm{H}, \mathrm{d}, 2 \times 2^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.15(2 \times \mathrm{C}-10), 23.70$ $(2 \times C-4), \quad 39.15 \quad(2 \times C-10 a), \quad 40.08 \quad(2 \times C-3 a), 41.04$ ($\mathrm{ArCH} \mathrm{z}_{2} \mathrm{Ar}$), $114.81(2 \times \mathrm{C}-6), 115.40(2 \times \mathrm{C}-9 \mathrm{~b}), 117.91(2 \times$ $\mathrm{C}-9), 123.06(2 \times \mathrm{C}-8), 123.97(2 \times \mathrm{C}-7), 126.22\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}^{-}}\right.$ phenyl), $128.43\left(2 \times\right.$ C-9a), $128.87\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), 129.43 $\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $129.57\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $130.02(2 \times$ $\left.\mathrm{C}_{\mathrm{q}}\right), 132.84\left(2 \times \mathrm{C}_{\mathrm{t}}\right), 133.41\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.37\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.82$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 140.8\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 168.8(2 \times \mathrm{C}=0, \mathrm{COPh}), 177.77(2 \times$ C-1) and 178.35 ($2 \times \mathrm{C}-3$); m/z (FD) 853 (${ }^{+}, 100 \%$), 749 (8) and 426 (22).

meso-N, \mathbf{N} '-M ethylenedi-p-phenylenebis(5-phenylsulfonyl-1,2,3, 3a,4,5,10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9 b

This compound was obtained from in situ generated N -phenylsulfonylindole-2,3-quinodimethane $\mathbf{3 b}$ from N -phenyl-sulfonyl-2,3-bis(bromomethyl)indole 8b ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) and as the starting educt the bismaleimide 4 a ($80 \mathrm{mg}, 0.22$ mmol). The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield 70% (290 mg), $\mathrm{mp} 151-155^{\circ} \mathrm{C}$ (from ethanol) (Found: C, $68.56 ; \mathrm{H}, 4.33 ; \mathrm{N}, 5.86 ; \mathrm{S}, 6.44$.
$\mathrm{C}_{53} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ requires C, 68.84; H, 4.32; N, 6.05; S, 6.93\%); $\delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ 2.92-2.96 (2H, m, ${ }^{2} \mathrm{~J} 15.35$ and ${ }^{3} \mathrm{~J} 8.07$, $2 \times 10-\mathrm{H} \beta), 3.26-3.31\left(2 \mathrm{H}, \mathrm{m}^{2}{ }^{2} 17.91\right.$ and $^{3} \mathrm{~J} 8.6,2 \times 4-\mathrm{H} \beta$), 3.31-3.34 ($2 \mathrm{H}, \mathrm{d}^{2}{ }^{2} \mathrm{~J} 16.37$ and $\left.^{3}{ }^{3} \mathrm{~J} 3.17,2 \times 10-\mathrm{H} \alpha\right), 3.45-3.49$ (2 H, ddd, ${ }^{3} \mathrm{~J} 8.6,2 \times 10 \mathrm{a}-\mathrm{H}$), 3.54-3.57 (2 H , ddd, ${ }^{3} \mathrm{~J} 7.03$, $2 \times 3 \mathrm{a}-\mathrm{H}), 3.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.05-4.08\left(2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{j}\right.$ 17.51, $2 \times 4-\mathrm{Ha}$), $6.86-6.87\left(4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.42,2 \times 2 \mathrm{H}\right.$-phenyl), 7.11-7.13 ($4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.43,2 \times 2 \mathrm{H}$-phenyl), $7.24-7.35(8 \mathrm{H}, \mathrm{m}, 2 \times 8-\mathrm{H}$, $2 \times 7-\mathrm{H}, 2 \times 9-\mathrm{H}, 2 \times 6-\mathrm{H}), 7.35-7.41\left(4 \mathrm{H}, \mathrm{m}, 2 \times 3^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 5^{\prime}-\mathrm{H}\right), 7.8-7.81\left(2 \mathrm{H}, \mathrm{d}, 2 \times 4^{\prime}-\mathrm{H}\right)$ and $8.16-8.17(4 \mathrm{H}, \mathrm{d}$, $2 \times 2^{\prime}-\mathrm{H}$ and $\left.2 \times 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(150.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.70(2 \times$ C-10), $22.60(2 \times \mathrm{C}-4), 38.50$ ($2 \times \mathrm{C}-10 \mathrm{a}$), 39.65 ($2 \times \mathrm{C}-3 \mathrm{a}$), $41.04\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right), 114.53(2 \times \mathrm{C}-6), 116.47(2 \times \mathrm{C}-9 \mathrm{~b}), 118.24$ $(2 \times \mathrm{C}-9), 123.61(2 \times \mathrm{C}-8), 124.77(2 \times \mathrm{C}-7), 126.25(2 \times$ $2 \times \mathrm{C}_{\mathbf{t}}$-phenyl), $126.47\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $128.65(2 \times \mathrm{C}-9 \mathrm{a})$, $129.28\left(2 \times 2 \times C_{t}\right.$-phenyl), $129.37\left(2 \times 2 \times\right.$ C $_{t}$-phenyl), 129.98 $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 132.20\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 133.66\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.33\left(2 \times \mathrm{C}_{\mathrm{t}}\right)$, $138.51\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 140.83\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 177.81(2 \times \mathrm{C}-1)$ and 178.17 ($2 \times \mathrm{C}-3$); m/z (FD) 924 (${ }^{+}, 100 \%$), 784 (4), 701 (4), 641 (7) and 462 (16).

meso-N N^{\prime}-M ethylenedi-p-phenylenebis(5-acetyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9c

This compound was obtained from in situ generated N-acetyl-indole-2,3-quinodimethane 3c from N -acetyl-2,3-bis(bromomethyl)indole 8c ($400 \mathrm{mg}, 1.16 \mathrm{mmol}$) as the starting educt and the bismaleimide $4 \mathrm{a}(200 \mathrm{mg}, 0.58 \mathrm{mmol})$. The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield 60% (220 mg), mp $180-183^{\circ} \mathrm{C}$ (from ethanol). Several purification methods were used. In all cases the compound included ethanol in a non-stoichiometric ratio. Therefore the results of elemental analysis are given with the inclusion of ethanol (0.2 mol) (Found: C, 73.32; $\mathrm{H}, 4.89 ; \mathrm{N}, 7.51 . \mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, 73.27; H , 4.88; N , 7.59\%); $\delta_{\text {H }}(600 \mathrm{M} \mathrm{H} \mathrm{z}$; acetone) 2.73 (6 H , s, $\left.2 \times \mathrm{CH}_{3}\right), 3.03-3.07\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} 15.98\right.$ and $^{3} \mathrm{~J} 8.4,2 \times 10-\mathrm{H} \beta$), $3.25-3.29\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} 15.95\right.$ and $\left.^{3} \mathrm{~J} 3.7,2 \times 10-\mathrm{H} \alpha\right), 3.39-3.43$ ($2 \mathrm{H}, \mathrm{dd}^{2}{ }^{2}{ }^{\mathrm{J}} 15.86$ and ${ }^{3} \mathrm{~J} 8.06,2 \times 4-\mathrm{H} \beta$), $3.59-3.63$ ($2 \mathrm{H}, \mathrm{ddd}^{3}{ }^{3} \mathrm{~J}$ $8.5,2 \times 10 \mathrm{a}-\mathrm{H}), 3.69-3.72\left(2 \mathrm{H}\right.$, ddd, $\left.{ }^{3} \mathrm{~J} 8.15,2 \times 3 \mathrm{a}-\mathrm{H}\right), 3.82-$ $3.86\left(2 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} \mathrm{l} 17.11\right.$ and $^{3}{ }^{3}$ 3.20, $2 \times 4-\mathrm{H} \alpha$), $3.94(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 7.02-7.04$ ($4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}$ 8.52, $2 \times 2 \mathrm{H}$-phenyl), 7.19$7.21\left(4 \mathrm{H}, \mathrm{d}^{3}{ }^{3}\right) 8.85,2 \times 2 \mathrm{H}$-phenyl), $7.21-7.24\left(2 \mathrm{H},{ }^{3} \mathrm{~J} 7.4\right.$, ddd, $2 \times 8-\mathrm{H}), 7.24-7.27\left(2 \mathrm{H}, \mathrm{ddd},{ }^{3} \mathrm{~J} 7.6,2 \times 7-\mathrm{H}\right), 7.51-7.52(2 \mathrm{H}$, d, $\left.{ }^{3} \mathrm{~J} 7.13,2 \times 9-\mathrm{H}\right), 8.07-8.08\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.66,2 \times 6-\mathrm{H}\right)$ ethanol $1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 2.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $3.53\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{c}}\left(150.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.60(2 \times \mathrm{C}-10), 24.03(2 \times \mathrm{C}-4)$, $27.22\left(2 \times \mathrm{CH}_{3}\right), 38.70(2 \times \mathrm{C}-10 \mathrm{a}), 40.06(2 \times \mathrm{C}-3 \mathrm{a}), 41.00$ ($\mathrm{ArCH}_{2} \mathrm{Ar}$), $115.19(2 \times \mathrm{C}-6), 115.70(2 \times \mathrm{C}-9 \mathrm{~b}), 118.02(2 \times$ C-9), $123.29(2 \times \mathrm{C}-8), 124.57(2 \times \mathrm{C}-7), 126.21\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}^{-}}\right.$ phenyl), $128.80(2 \times \mathrm{C}-9 \mathrm{a}), 129.52\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), 130.02 $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 133.03\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.98\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 140.79\left(2 \times \mathrm{C}_{\mathrm{q}}\right)$, $169.58(2 \times \mathrm{C}=0, \mathrm{Ac}), 178.04(2 \times \mathrm{C}-1)$ and $178.36(2 \times \mathrm{C}-3)$; m / z (FD) 728 (${ }^{+}, 100 \%$), 691 (40) and 647 (21).

meso-N, N '-Sulfonyldi-p-phenylenebis(5-benzoyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo [3,4-b]carbazole-1,3-dione) 9d

This compound was obtained from in situ generated N-benzoylindole-2,3-quinodimethane 3a from N-benzoyl-2,3bis(bromomethyl) indole 8 a ($1000 \mathrm{mg}, 2.45 \mathrm{mmol}$) as the starting educt and the bismaleimide $\mathbf{4 b}$ ($500 \mathrm{mg}, 1.22 \mathrm{mmol}$). The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield 80% (1.76 g), mp $175-180^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 71.38; H , 4.16; $\mathrm{N}, 6.00$; S, 4.61. $\mathrm{C}_{54} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires C, 71.85; $\mathrm{H}, 4.21 ; \mathrm{N}, 6.20 ; \mathrm{S}, 3.55 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.03-3.09$ ($4 \mathrm{H}, \mathrm{dd}^{2}{ }^{2}$) 15.65 and $^{3}{ }^{3}$) $8.53,2 \times 10-\mathrm{H} \beta, 2 \times 4-\mathrm{H} \beta$), 3.31-3.43 ($4 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H} \mathrm{\alpha}, 2 \times 4-\mathrm{H} \alpha$) , 3.43-3.55(4H, m, ${ }^{3} \mathrm{~J} 8.2,2 \times 10 \mathrm{a}-$ H, ³ $8.16,2 \times 3 \mathrm{a}-\mathrm{H}), 7.06-7.10(2 \mathrm{H}, \mathrm{d}, 2 \times 9-\mathrm{H}), 7.16-7.23$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$-phenyl), 7.32-7.38 (4H, m, $2 \times 2 \mathrm{H}$-phenyl), 7.43$7.59(6 \mathrm{H}, \mathrm{m}, 2 \times 8 \mathrm{H}, 2 \times 7-\mathrm{H}, 2 \times 6-\mathrm{H}), 7.6-7.65(6 \mathrm{H}, \mathrm{m}$,
$2 \times 3^{\prime}-\mathrm{H}, 2 \times 5^{\prime}-\mathrm{H}$ and $\left.2 \times 4^{\prime}-\mathrm{H}\right)$ and $7.86-7.96(4 \mathrm{H}, \mathrm{d}, 2 \times$ $2^{\prime}-\mathrm{H}$ and $\left.2 \times 6^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.75(2 \times \mathrm{C}-10)$, $23.57(2 \times C-4), 39.18(2 \times C-10 a), 40.12(2 \times C-3 a), 114.79$ $(2 \times \mathrm{C}-6), 115.24(2 \times \mathrm{C}-9 \mathrm{~b}), 117.9(2 \times \mathrm{C}-9), 123.08(2 \times \mathrm{C}-8)$, $124.04(2 \times \mathrm{C}-7), 126.58\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $128.30(2 \times \mathrm{C}-9 \mathrm{a})$, $128.50\left(2 \times 2 \times\right.$ C $_{\mathbf{t}}$-phenyl $), 128.9\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), 129.44 $\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $132.92\left(2 \times \mathrm{C}_{\mathrm{t}}\right), 133.25\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.25$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.27\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.8\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 140.58\left(2 \times \mathrm{C}_{\mathrm{q}}\right)$, $168.78(2 \times \mathrm{C}=0, \mathrm{COPh}), 177.08(2 \times \mathrm{C}-1)$ and $177.61(2 \times$ C-3); m/z (FD) 902 ($\mathrm{M}^{+}, 100 \%$), 798 (7), 657 (5), 617 (6) and 451 (4).

meso-N,N'-Sulfonyldi-p-phenylenebis(5-phenylsulfonyl-1,2,3,3a,

 4,5,10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9eThis compound was obtained from in situ generated N -phenylsulfonylindole-2,3-quinodimethane 3b from N -phenyl-sulfonyl-2,3-bis(bromomethyl)indole $\mathbf{8 b}(200 \mathrm{mg}, 0.45 \mathrm{mmol})$ as starting educt and the bismaleimide $\mathbf{4 b}$ ($92 \mathrm{mg}, 0.22 \mathrm{mmol}$) The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio $1: 2$); yield 80% (350 mg), mp $176-180^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 63.97; H, 3.99; N, 5.67; S, 9.93. $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{3}$ requires C, 64.07; H, 3.89; N, 5.74; S, 9.86%); $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$; DM SO) 2.93-3.05 ($2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{j} 15.9$ and $^{3} \mathrm{~J} 8.32,2 \times 10-\mathrm{H} \beta$), 3.1-3.2 ($2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{j} 16.2$ and ${ }^{3} \mathrm{~J} 3.48,2 \times 4-\mathrm{H} \beta$), 3.34-3.46(2H, $\mathrm{m}, 2 \times 10-\mathrm{H} \alpha$), $3.55-3.77(6 \mathrm{H}, \mathrm{m}, 2 \times 10 \mathrm{a}-\mathrm{H}, 2 \times 3 \mathrm{a}-\mathrm{H}$ and $2 \times 4-\mathrm{H} \alpha), 7.22-7.55(16 \mathrm{H}, \mathrm{m}, 2 \times 9-\mathrm{H}, 2 \times 2 \mathrm{H}$-phenyl, $2 \times 2 \mathrm{H}-$ phenyl, $2 \times 8-\mathrm{H}, 2 \times 7-\mathrm{H}, 2 \times 6-\mathrm{H}), 7.77-7.81\left(4 \mathrm{H}, \mathrm{d}, 2 \times 3^{\prime}-\mathrm{H}\right.$ $2 \times 5^{\prime}-\mathrm{H}$) and $7.86-7.96\left(6 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}, 2 \times 6^{\prime}-\mathrm{H}\right.$ and $2 \times 4^{\prime}$ H); $\delta_{\mathrm{c}}(50.3 \mathrm{M} \mathrm{Hz}$ D M SO) $19.67(2 \times \mathrm{C}-10)$, $21.81(2 \times \mathrm{C}-4)$, 37.96 ($2 \times \mathrm{C}-10 \mathrm{a}$), 38.86 ($2 \times \mathrm{C}-3 \mathrm{a}$), 113.90 ($2 \times \mathrm{C}-6$), 116.90 $(2 \times \mathrm{C}-9 \mathrm{~b}), 118.49(2 \times \mathrm{C}-9), 123.63(2 \times \mathrm{C}-8), 124.52(2 \times$ C-7), $125.98\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $127.48\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $128.08\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $\quad 128.54 \quad(2 \times \mathrm{C}-9 \mathrm{a}), \quad 129.60$ $\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $132.61\left(2 \times \mathrm{C}_{\mathrm{t}}\right), 134.28\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.41$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.53\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 137.26\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 139.95\left(2 \times \mathrm{C}_{\mathrm{q}}\right)$, 177.81 ($2 \times \mathrm{C}-1$), 177.95 ($2 \times \mathrm{C}-3$); m/z (F D) 974 (${ }^{+}, 100 \%$), 830 (16) and 487 (15).

meso- N, N '-Sulfonyldi-p-phenylenebis(5-acetyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) $9 f$

This compound was obtained from in situ generated N -acetylindole-2,3-quinodimethane 3c from N -acetyl-2,3-bis(bromomethyl)indole 8c ($1000 \mathrm{mg}, 2.9 \mathrm{mmol}$) as the starting educt and the bismaleimide $\mathbf{4 b}$ ($590 \mathrm{mg}, 1.45 \mathrm{mmol}$). The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield $70 \%(1.5 \mathrm{~g}), \mathrm{mp} 173-177^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 67.24; $\mathrm{H}, 4.45 ; \mathrm{N}, 7.09 ; \mathrm{S}, 4.11 . \mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ requires C, 67.88; H, 4.36; $\mathrm{N}, 7.19 ; \mathrm{S}, 4.11$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; acetone) $2.72(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right), 3.03-3.06\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{~J} 15.98\right.$ and ${ }^{3} \mathrm{~J} 8.4,2 \times 10-\mathrm{H} \beta$) $3.07-3.1\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} 15.95\right.$ and $\left.{ }^{3} \mathrm{~J} 3.7,2 \times 10-\mathrm{H} \alpha\right), 3.23-3.47$ ($2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \beta$), 3.63-3.68 (2 H, ddd, $2 \times 10 \mathrm{a}-\mathrm{H}$), 3.73-3.85 $(4 \mathrm{H}, \mathrm{m}, 2 \times 3 \mathrm{a}-\mathrm{H}$ and $2 \times 4-\mathrm{H} \alpha), 7.2-7.28(4 \mathrm{H}, \mathrm{m}, 2 \times 2 \mathrm{H}-$ phenyl), $7.44-7.51(6 \mathrm{H}, \mathrm{m}, 2 \times 2 \mathrm{H}$-phenyl and $2 \times 8-\mathrm{H})$, 7.69-7.99 ($4 \mathrm{H}, \mathrm{d}, 2 \times 7-\mathrm{H}$ and $2 \times 9-\mathrm{H})$ and $8.04-8.06(2 \mathrm{H}, \mathrm{d}$, ${ }^{2}$ J $\left.6.96,2 \times 6-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.44(2 \times \mathrm{C}-10)$, $23.93(2 \times \mathrm{C}-4), 27.2\left(2 \times \mathrm{CH}_{3} \mathrm{Ac}\right)$, $38.71(2 \times \mathrm{C}-10 \mathrm{a}), 40.02$ $(2 \times C-3 a), \quad 115.03 \quad(2 \times C-6), \quad 115.45 \quad(2 \times C-9 b), \quad 118.02$ $(2 \times \mathrm{C}-9), 123.28(2 \times \mathrm{C}-8), 124.6(2 \times \mathrm{C}-7), 126.51(2 \times$ $2 \times \mathrm{C}_{\mathrm{t}}$-phenyl), $128.40\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$ - phenyl), $128.67(2 \times \mathrm{C}-9 \mathrm{a})$, $132.92\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.82\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.21\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 140.44$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 169.57(2 \times \mathrm{C}=0, \mathrm{Ac}), 177.32(2 \times \mathrm{C}-1), 177.59$ ($2 \times \mathrm{C}-3$); m/z (FD) $778\left(\mathrm{M}^{+}, 100 \%\right), 744$ (73), 700 (46) and 388 (8).

meso- N, N '-C arbonyldi-p-phenylenebis(5-benzoyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9 g

This compound was obtained from in situ generated N -benzoylindole-2,3-quinodimethane 3a from N-benzoyl-2,3-
bis(bromomethyl)indole 8a ($1.0 \mathrm{~g}, 2.45 \mathrm{mmol}$) as the starting educt and the bismaleimide 4 c ($450 \mathrm{mg}, 1.22 \mathrm{mmol}$). The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield $60 \%(1.27 \mathrm{~g}), \mathrm{mp} 148-153^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 76.41; $\mathrm{H}, 4.21 ; \mathrm{N}, 6.34 . \mathrm{C}_{55} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 76.23 ; \mathrm{H}, 4.38 ; \mathrm{N}$, 6.46%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 3.04-3.14$ ($4 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H} \beta$, $2 \times 4-\mathrm{H} \beta), 3.33-3.45(4 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H} \alpha$ and $2 \times 4-\mathrm{H} \alpha), 3.46-$ $3.59(4 \mathrm{H}, \mathrm{m}, 2 \times 10 \mathrm{a}-\mathrm{H}$ and $2 \times 3 \mathrm{a}-\mathrm{H}), 7.08-7.13(2 \mathrm{H}, \mathrm{d}, 2 \times$ $9-\mathrm{H}), 7.18-7.25(4 \mathrm{H}, \mathrm{m}, 2 \times 2 \mathrm{H}-\mathrm{ph} n \mathrm{y}$) $)$, $7.26-7.32(4 \mathrm{H}, \mathrm{m}$, $2 \times 2 \mathrm{H}$-phenyl), $7.45-7.52(6 \mathrm{H}, \mathrm{m}, 2 \times 8-\mathrm{H}, 2 \times 7-\mathrm{H}, 2 \times 6-\mathrm{H})$, $7.59-7.7\left(6 \mathrm{H}, \mathrm{m}, 2 \times 3^{\prime}-\mathrm{H}, 2 \times 5^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 4^{\prime}-\mathrm{H}\right)$ and $7.74-7.8$ $\left(4 \mathrm{H}, \mathrm{d}, 2 \times 2^{\prime}-\mathrm{H}\right.$ and $\left.2 \times 6^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.74$ ($2 \times \mathrm{C}-10$), $23.59(2 \times \mathrm{C}-4), 39.21$ ($2 \times \mathrm{C}-10 \mathrm{a}$), 40.13 ($2 \times$ C-3a), 114.79 ($2 \times$ C-6), $115.31(2 \times \mathrm{C}-9 \mathrm{~b}), 117.9(2 \times \mathrm{C}-9)$, 123.07 ($2 \times \mathrm{C}-8$), $124.01(2 \times \mathrm{C}-7), 125.89\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $128.36\left(2 \times\right.$ C-9a), $128.86\left(2 \times 2 \times\right.$ C $_{\text {t }}$-phenyl), $129.44(2 \times$ $2 \times \mathrm{C}_{\mathrm{t}}$-phenyl), $130.57\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $132.9\left(2 \times \mathrm{C}_{\mathrm{t}}\right)$, $133.33\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.28\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.48\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.8$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 168.8(2 \times \mathrm{C}=0, \mathrm{COPh}), 177.43(2 \times \mathrm{C}-1), 177.69$ ($2 \times \mathrm{C}-3$) and 194.18 (C=0); m/z (F D) 866 (M ${ }^{+}, 100 \%$), 863 (8), 758 (5) and 433 (3).

meso- N, N '-C arbonyldi-p-phenylenebis(5-phenylsulfonyl-1,2,3, 3a,4,5,10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9h

This compound was obtained from in situ generated N -phenylsulfonylindole-2,3-quinodimethane 3b from N -phenyl-sulfonyl-2,3-bis(bromomethyl)indole 8b ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) as the starting educt and the bismaleimide $\mathbf{4 c}(83.73 \mathrm{mg}, 0.22$ $\mathrm{mmol})$. The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield 60% (253 mg), $\mathrm{mp} 158-161^{\circ} \mathrm{C}$ (from ethanol). Several purification methods were used. In all cases the compound included ethanol in a non-stoichiometric ratio. Therefore the results of elemental analysis are given with the inclusion of ethanol (0.2 mol) (Found: C, 67.06; H, 4.24; N, 5.86; S, 6.45 . $\mathrm{C}_{53} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{2}$ requires $\mathrm{C}, 67.17 ; \mathrm{H}, 4.04 ; \mathrm{N}, 5.90 ; \mathrm{S}, 6.76 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.85-2.98\left(2 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{~J}\right.$ 15.8, $\left.2 \times 10-\mathrm{H} \beta\right)$, 3.02-3.48 ($4 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \beta$ and $2 \times 10-\mathrm{H} \alpha$), 3.52-3.65 ($4 \mathrm{H}, \mathrm{m}$, $2 \times 10 \mathrm{a}-\mathrm{H}$ and $2 \times 3 \mathrm{a}-\mathrm{H}), 4.06-4.14(2 \mathrm{H}, \mathrm{d}, 2 \times 4-\mathrm{H} \alpha), 7.09-$ 7.13 ($4 \mathrm{H}, \mathrm{d}, 2 \times 2 \mathrm{H}$-phenyl), 7.2-7.48 ($12 \mathrm{H}, \mathrm{m}, 2 \times 2 \mathrm{H}$-phenyl, $2 \times 9-\mathrm{H}, 2 \times 8-\mathrm{H}, 2 \times 7-\mathrm{H}$ and $2 \times 6-\mathrm{H}), 7.61-7.8(4 \mathrm{H}, \mathrm{d}$, $2 \times 3^{\prime}-\mathrm{H}$ and $\left.2 \times 5^{\prime}-\mathrm{H}\right), 7.84-7.98\left(4 \mathrm{H}, \mathrm{d}, 2 \times 2^{\prime}-\mathrm{H}\right.$ and $2 \times 6^{\prime}-$ H), 8.14-8.18 ($2 \mathrm{H}, \mathrm{d}, 2 \times 4^{\prime}-\mathrm{H}$) ethanol $1.18\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 2.09$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $3.50\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(50.3 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.74$ ($2 \times \mathrm{C}-10$), 22.6 ($2 \times \mathrm{C}-4$), $38.62(2 \times \mathrm{C}-10 \mathrm{a}), 39.79(2 \times \mathrm{C}-3 \mathrm{a})$, $114.57(2 \times \mathrm{C}-6), 116.38(2 \times \mathrm{C}-9 \mathrm{~b}), 118.26(2 \times \mathrm{C}-9), 123.69$ $(2 \times \mathrm{C}-8), 124.91(2 \times \mathrm{C}-7), 125.94\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), 126.52 $\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $128.58(2 \times \mathrm{C}-9 \mathrm{a}), 129.32 \quad\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}^{-}}\right.$ phenyl), $130.47\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $132.05\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 133.75$ $\left(2 \times C_{t}\right), 135.42\left(2 \times C_{q}\right), 136.36\left(2 \times C_{q}\right), 136.78\left(2 \times C_{q}\right)$, $138.58\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 177.42(2 \times \mathrm{C}-1), 177.8(2 \times \mathrm{C}-3)$ and 194.16 (C=0); m/z (FD) 938 (M $\left.{ }^{+}, 100 \%\right), 806$ (38), 653 (36) and 469 (13).

meso-N, N '-C arbonyIdi-p-phenylenebis(5-acetyl-1,2,3,3a,4,5, 10,10a-octahydropyrrolo[3,4-b]carbazole-1,3-dione) 9 i

This compound was obtained from in situ generated N -acetyl-indole-2,3-quinodimethane 3c from N -acetyl-2,3-bis(bromomethyl)indole 8c ($1.0 \mathrm{~g}, 2.9 \mathrm{mmol}$) as the starting educt and bismaleimide 4 c ($540 \mathrm{mg}, 1.45 \mathrm{mmol}$). The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 1:2); yield 70\% (1.5 g), mp 222-226 ${ }^{\circ} \mathrm{C}$ (from ethanol). Several purification methods were used. In all cases the compound included ethanol in a non-stoichiometric ratio. Therefore the results of elemental analysis are given with the inclusion of ethanol (0.2 mol) (Found: C, 71.80; H, 4.68; $\mathrm{N}, 7.35 . \mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires C, 71.92; H, 4.52; N, 7.45\%); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 2.73(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 3.02-3.08\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} 15.9,2 \times 10-\mathrm{H} \beta\right), 3.33-$
$3.41\left(4 \mathrm{H}, \mathrm{m},{ }^{2} \mathrm{~J} 16.7,2 \times 4-\mathrm{H} \beta\right.$ and $\left.2 \times 10-\mathrm{H} \alpha\right), 3.52-3.61(4 \mathrm{H}$ $\mathrm{m},{ }^{3} \mathrm{~J} 8.8,2 \times 10 \mathrm{a}-\mathrm{H}$ and $\left.2 \times 3 \mathrm{a}-\mathrm{H}\right), 3.95-4.00(2 \mathrm{H}, \mathrm{d}, 2 \times$ $4-\mathrm{H} \alpha), 7.23-7.33(8 \mathrm{H}, \mathrm{m}, 4 \times 2 \mathrm{H}-\mathrm{ph}$ enyl), 7.45-7.47 (2H, d, $2 \times 9-\mathrm{H}), 7.74-7.79(4 \mathrm{H}, \mathrm{d}, 2 \times 8-\mathrm{H}, 2 \times 7-\mathrm{H}), 7.88-7.9(2 \mathrm{H}, \mathrm{d}$ $2 \times 6-\mathrm{H})$ ethanol $1.18\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 2.09(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.50(2 \mathrm{H}$, q, CH_{2}); $\delta_{\mathrm{c}}\left(50.3 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.47(2 \times \mathrm{C}-10)$, $23.43(2 \times$ C-4), 26.92 ($2 \times$ C-10a), 38.87 ($2 \times$ C-3a), 115.11 ($2 \times$ C-9b), 115.27 ($2 \times \mathrm{C}-6$), $117.76(2 \times \mathrm{C}-9), 122.86(2 \times \mathrm{C}-8), 124.02$ ($2 \times$ C-7), 126.61 ($2 \times 2 \times$ C $_{\text {t }}$-phenyl), $128.38(2 \times \mathrm{C}-9 \mathrm{a}$), 130.04 $\left(2 \times 2 \times \mathrm{C}_{\mathrm{t}}\right.$-phenyl), $133.16\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.42\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 135.82$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 136.10\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 170.00(2 \times \mathrm{C}=0, \mathrm{Ac}), 178.17(2 \times$ $\mathrm{C}-1), 178.28$ ($2 \times \mathrm{C}-3$) and 194.01 (C=0); m/z (FD) 742 (M^{+}, 100%), 700 (36), 658 (14), 519 (5) and 371 (11).

G eneral procedure for the preparation of compounds 10-12

To a solution of the appropriate vinylindole 6 (1.78 mmol) in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$, a solution of the bismaleimide $4 \mathrm{a}(0.89 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ was added dropwise. The reaction mixture was stirred at room temperature, for 6 days, in the case of the dienes $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}$, and refluxed for 4 days for the vinylindole $\mathbf{6 c}$. The solution was concentrated under reduced pressure and the residue was purified by flash column chromatography using light petroleum-ethyl acetate as eluent.
meso-N,N'-M ethylenedi-p-phenylenebis(5-methyl-10-
phenylsulfonyl-1,2,3,3a $\beta, 4,10,10 a \beta, 10 \mathrm{~b} \beta$-octahydropyrrolo[3,4-a]carbazole-1,3-dione) 10a and 2-f 4 -[4-(2,5-diox0-2,5-dihydro1H -pyrrol-1-yl)benzyl]phenyl\}5-methyl-10-phenyIsulfonyl1,2,3,3aß,4,10,10a $\beta, 10 \mathrm{~b} \beta$-octahydropyrrolo [3,4-a carbazole-1,3dione 11a
The mixture of the two compounds was obtained from 3vinylindole 6 a ($528 \mathrm{mg}, 1.78 \mathrm{mmol}$) and the bismaleimide $\mathbf{4 a}$ $(320 \mathrm{mg}, 0.89 \mathrm{mmol})$. The products were separated and purified by flash column chromatography using light petroleum-ethyl acetate as eluent (ratio 2:1).
Compound 10a. Y ield 31% (263 mg), mp 200-202 ${ }^{\circ} \mathrm{C}$ (from methanol) (Found: C, 68.99; H, 4.75; N, 5.63; S, 6.76. $\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ requires C, 69.31; H, 4.65; $\mathrm{N}, 5.87, \mathrm{~S}, 6.72 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.07\left(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{CH}_{3}\right), 2.34\left(2 \mathrm{H}, \mathrm{dd},{ }^{2}\right)$ 15.0 and ${ }^{3}$) $\left.6,2 \times 4-\mathrm{H}_{\alpha}\right), 2.87\left(2 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} \mathrm{~J} 15.0\right.$ and ${ }^{3} \mathrm{~J}$ 1.7, 2×4 $\mathrm{H} \beta$) $3.28\left(2 \mathrm{H}, \mathrm{pt},{ }^{3} \mathrm{~J} 7.3,2 \times 3 \mathrm{a}-\mathrm{H} \beta\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}{ }_{2} \mathrm{Ar}\right)$, $4.09\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 8.9\right.$ and $\left.{ }^{3} \mathrm{~J} 6,2 \times 10 \mathrm{~b}-\mathrm{H} \beta\right), 4.57(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times 10 \mathrm{a}-\mathrm{H} \beta$) , $6.84\left(4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.8, \mathrm{ArH}\right), 6.94-7.06(6 \mathrm{H}, \mathrm{m}$, ArH), 7.13-7.23 (4H, m, ArH), 7.37-7.53 (6H, m, ArH), 7.63 $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.8,2 \times 6-\mathrm{H}\right)$ and $7.88\left(4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} .2,2 \times 2-\mathrm{H}\right.$ and $2 \times 6-\mathrm{H}$ of PhSO_{2}); $\delta_{\mathrm{c}}\left(50.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.2(\mathrm{q}, 2 \times 5-$ $\left.\mathrm{CH}_{3}\right), 33.9(\mathrm{t}), 37.3(\mathrm{~d}), 40.9\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 43.4(\mathrm{~d}), 62.5(\mathrm{~d})$, 115.2 (d), 123.5 (d), 123.9 (d), 126.2 (d), 126.4 (s), 127.3 (d), 127.5 (s$), 129.0(\mathrm{~s}+\mathrm{d}), 129.1$ (d), 129.5 (d), 129.9 (s), 133.4 (d), 137.7 (s), 140.7 (s), 144.6 (s), 173.2 (s, $2 \times \mathrm{C}=0$) and $177.5(\mathrm{~s}, 2 \times \mathrm{C}=0)$; m/z (FD) $952\left(\mathrm{M}^{+}, 100 \%\right), 655$ (26) and 297 (17).

Compound 11a. Y ield 55\% (320 mg), mp $155-160^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 69.49; H, 4.68; N, 6.15. $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires C, 69.60; $\mathrm{H}, 4.45 ; \mathrm{N}, 6.40 \%$); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.11\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.39\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} 15.0\right.$ and ${ }^{3} \mathrm{~J}$ $6.0,4-\mathrm{H} \alpha), 2.90\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} \mathrm{~J} 15.0\right.$ and $^{3} \mathrm{~J} 1.7,4-\mathrm{H} \beta$), $3.32(1 \mathrm{H}, \mathrm{pt}$, $3 \mathrm{a}-\mathrm{H} \beta$) , $3.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.13$ ($1 \mathrm{H}, \mathrm{dd}^{3}{ }^{3} \mathrm{~J} 8.8$ and ${ }^{3} \mathrm{~J} 5.9$, 10b-H β), $4.62(1 \mathrm{H}, \mathrm{br} s, 10 \mathrm{a}-\mathrm{H} \beta), 6.81(2 \mathrm{H}, \mathrm{s}$, olefinic H of maleimide), 6.87 ($2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.6, \mathrm{ArH}$), 6.97 ($1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J} 7.6, \mathrm{ArH}$), $7.11\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}\right.$ 7.9, ArH) , 7.15-7.23 (5H, m, ArH), 7.40-7.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.54\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J} 7,7-\mathrm{H}\right.$ or $\left.8-\mathrm{H}\right), 7.65\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.2\right.$, $6-\mathrm{H})$ and $7.90\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{j} 7.5,2-\mathrm{H}\right.$ and $6-\mathrm{H}$ of $\left.\mathrm{PhSO}_{2}\right) ; \delta_{\mathrm{c}}(100.6$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.2$ ($\mathrm{q}, 5-\mathrm{CH}_{3}$), 33.8 (t), 37.2 (d), 41.0 (t , ArCH ${ }_{2} \mathrm{Ar}$), 43.4 (d), 62.5 (d), 115.2 (d), 123.5 (d), 123.9 (d), 126.1 (d), 126.3 ($2 \times \mathrm{d}$), 127.3 (d), 127.4 (s), 129.0 (d), 129.2 (d), 129.3 (s), 129.5 (d), 129.7 (d), 129.8 (s), 133.4 (s), 134.1 (d), 137.4 (s), 140.2 (s$), 140.8$ (s), 144.5 (s), 169.5 (s, $2 \times$ $\mathrm{C}=0$), 173.3 ($\mathrm{s}, \mathrm{C}=0$) and 177.7 ($\mathrm{s}, \mathrm{C}=0$); m/z (FD) 655 (M^{+}, 100%).
meso- N, N '- M ethylenedi-p-phenylenebis(4-methoxy-10-
phenylsulfonyl-1,2,3,3a $\beta, 4,10,10 a \beta, 10 b \beta$-octahydropyrrolo $[3,4-$ a]carbazole-1,3-dione) 10b and 2- 4 -[4-(2,5-dioxo-2,5-dihydro1H -pyrrol-1-yl) benzyl]phenyl \}4-methoxy-10-phenylsulfonyl1,2,3,3a $\beta, 4,10,10 a \beta, 10 b \beta$-octahydropyrrolo[3,4-a $]$ carbazole-1,3dione 11b
A mixture of the two compounds was obtained from 3vinylindole $\mathbf{6 b}$ ($560 \mathrm{mg}, 1.78 \mathrm{mmol}$) and the bismaleimide $\mathbf{4 a}$ ($320 \mathrm{mg}, 0.89 \mathrm{mmol}$). The products were separated and purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio $2: 1$ then $1: 1$).
Compound 10b. Y ield 4% (35 mg), mp 200-203 ${ }^{\circ} \mathrm{C}$ (from light petroleum-ethyl acetate) (Found: C, 67.22; H, 4.70; N, 5.60; $\mathrm{S}, 6.66 . \mathrm{C}_{55} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{2}$ requires $\mathrm{C}, 67.05 ; \mathrm{H}, 4.50 ; \mathrm{N}, 5.68$; S, $6.51 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.63\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.67(2 \mathrm{H}$, pt, 3] $7.9,2 \times 3 \mathrm{a}-\mathrm{H} \beta$), $3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.05-4.12(4 \mathrm{H}$, $\mathrm{m}, 2 \times 10 \mathrm{~b}-\mathrm{H} \beta$ and $2 \times 4-\mathrm{H} \beta), 4.57\left(2 \mathrm{H}, \mathrm{dd}^{3}{ }^{3} \mathrm{~J}^{4.8}\right.$ and $^{4}{ }^{4} 2.7$, $2 \times 10 \mathrm{a}-\mathrm{H} \beta), 6.11(2 \mathrm{H}, \mathrm{br}$ s, $5-\mathrm{H}), 6.92-7.08$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.17-7.24 (4H, m, ArH), 7.44-7.61 (12H, m, ArH) and 7.90 ($4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7,2 \times 2-\mathrm{H}$ and $2 \times 6-\mathrm{H}$ of PhSO_{2}); $\delta_{\mathrm{c}}(50.3 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 39.7$ (d), 40.9 (t, $\mathrm{ArCH}_{2} \mathrm{Ar}$), 41.0 (d), 42.7 (d), 58.0 (q , $\left.2 \times \mathrm{OCH}_{3}\right), 60.8$ (d), 115.3 (d), 116.1 (d), 121.2 (d), 124.1 (d), 125.8 (s), 126.2 (d), 127.3 (d), 129.1 (s), 129.2 (d), 129.4 (d), 129.5 (s), 129.7 (s), 130.8 (d), 133.5 (d), 135.6 (s), 145.3 (s), 172.2 (s, $2 \times \mathrm{C}=0$) and $172.6(\mathrm{~s}, 2 \times \mathrm{C}=0)$; m/z (FD) $984\left(\mathrm{M}^{+}, 3 \%\right)$, 810 (10), 636 (100) and 313 (1).
Compound 11b. Y ield 16% (95 mg), mp $157-160^{\circ} \mathrm{C}$ (from light petroleum-ethyl acetate) (Found: C, 68.24; H, 4.31; N, 5.95. $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ requires $\left.\mathrm{C}, 67.94 ; \mathrm{H}, 4.35 ; \mathrm{N}, 6.25\right) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67\left(1 \mathrm{H}, \mathrm{pt},{ }^{3} \mathrm{~J} 7.9,3 \mathrm{a}-\mathrm{H} \beta\right.$), $3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.08-4.17(2 \mathrm{H}, \mathrm{m}, 10 \mathrm{~b}-\mathrm{H} \beta$ and $4-\mathrm{H} \beta)$, $4.58\left(1 \mathrm{H}, \mathrm{dd}^{3}{ }^{3}\right) 4.8$ and $\left.^{4} \mathrm{~J} 2.7,10 \mathrm{a}-\mathrm{H} \beta\right), 6.11\left(1 \mathrm{H}, \mathrm{dd}^{3}{ }^{3} \mathrm{~J} 5.8\right.$ and $\left.{ }^{4} \mathrm{~J} 2.9,5-\mathrm{H}\right), 6.79(2 \mathrm{H}, \mathrm{s}$, olefinic H of maleimide), 6.95-7.00 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.10 ($2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}$ 8.2, ArH), 7.22-7.30 ($6 \mathrm{H}, \mathrm{m}$, ArH), 7.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.54 ($1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}$ 7, $7-\mathrm{H}$ or $8-\mathrm{H}$), 7.61 $\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.1,6-\mathrm{H}\right)$ and $7.89\left(2 \mathrm{H}, \mathrm{d}, 3^{3} 7.8,2-\mathrm{H}\right.$ and $6-\mathrm{H}$ of PhSO_{2}); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 39.7$ (d), 41.0 (d), 41.1 (t, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 42.8$ (d), $58.0\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 60.8$ (d), 115.3 (d), 116.2 (d), 121.2 (d), 124.1 (d), 125.8 (s), 126.1 ($2 \times \mathrm{d}$), 126.3 (d), 127.3 (d), 129.3 (d), 129.4 (d), 129.6 (d), 129.8 (s), 130.8 (d), 133.6 (s), 134.1 (d), 135.5 (s), 137.5 (s), 140.3 (s), 140.7 (s), 145.2 (s), 169.5 ($\mathrm{s}, 2 \times \mathrm{C}=0$), $172.3(\mathrm{~s}, \mathrm{C}=0$) and $172.7(\mathrm{~s}, \mathrm{C}=0)$) m/z (FD) 671 ($\mathrm{M}^{+}, 22 \%$), 506 (13), 493 (20), 464 (54), 450 (100), 436 (61), 422 (47), 408 (62), 380 (25) and 312 (9).
meso-N,N'-M ethylenedi-p-phenylenebis(4-methoxycarbonyl-10-methyl-1,2,3,3aß,4 $\beta, 5,10 \mathrm{a} \beta, 10 \mathrm{~b} \beta$-octahydropyrrolo $[3,4-\mathrm{a}]$ carbazole-1,3-dione) 12
This compound was obtained from 3 -vinylindole $\mathbf{6 c}$ (383 mg , 1.78 mmol) and the bismaleimide $4 \mathrm{a}(320 \mathrm{mg}, 0.89 \mathrm{mmol})$. The product was purified by flash column chromatography using gradient light petroleum-ethyl acetate as eluent (ratio 2:1 then 1:1); yield 27% (189 mg), mp $185^{\circ} \mathrm{C}$ (from methanol) (Found: $\mathrm{C}, 71.38 ; \mathrm{H}, 5.24 ; \mathrm{N}, 7.19 . \mathrm{C}_{47} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires C, $71.56 ; \mathrm{H}$, 5.11; $\mathrm{N}, 7.10 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.86-3.05(4 \mathrm{H}, \mathrm{sa}, 2 \times$ $5-\mathrm{H} \alpha$ and $2 \times 5-\mathrm{H} \beta), 3.26-3.31(2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H} \beta), 3.83(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{NCH}_{3}$ or $2 \times \mathrm{OCH}_{3}$), $3.93\left(8 \mathrm{H}\right.$, br s, $\mathrm{ArCH}_{2} \mathrm{Ar}$ and $2 \times \mathrm{NCH}_{3}$ or $2 \times \mathrm{OCH}_{3}$), $4.28\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 8.2\right.$ and ${ }^{3} \mathrm{~J} 4,2 \times 3 \mathrm{a}-$ $\mathrm{H} \beta$) $4.53\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.2,2 \times 10 \mathrm{~b}-\mathrm{H} \beta\right.$), $7.10-7.29(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.54\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.5,2 \times 6-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(50.3 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 29.6(\mathrm{t})$, $31.0\left(\mathrm{q}, 2 \times \mathrm{NCH}_{3}\right), 39.6$ (d), 40.6 (d), 40.9 (t, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 43.1$ (d), 52.3 (q, $2 \times 0 \mathrm{CH}_{3}$), 109.4 (d), 110.3 (s), 118.5 (d), 119.5 (d), 122.5 (d), 125.9 (s), 126.3 (d), 127.4 (s), 129.6 (d), 134.1 (s), 138.1 (s), 140.9 (s), 172.4 ($\mathrm{s}, \mathrm{C}=0$), 173.9 ($\mathrm{s}, \mathrm{C}=0$) and 175.2 (s , C=0); m/z (F D) 788 ($\mathrm{M}^{+}, 100 \%$), 519 (45) and 394 (16).

C omputational methods

Input geometries of compounds 9a and 10a for semiempirical quantum chemistry calculations were derived from SY BYL $6.03{ }^{17}$ using theoption BUILD M OLECULE and the TRIPOS
force field M AXIM IN 2 for minimizing on a VA X station 4000 / 90. These conformations were then quantum mechanically minimized by using the keyword XY Z, and furthermore with VECT PRECISE, using a dec8400 5/300 (Zentrum für D atenverarbeitung, University of M ainz). The AM 1 hamiltonians in the M OPAC version 6.0 were used. ${ }^{18}$ The quality and precision of the application of the AM 1 method to anellated carbazole heterocycles has been documented by us. ${ }^{19}$

Acknowledgements

Dr E. G onzalez thanks the Generalität Valenciana (Spain) for a postdoctoral grant in 1996. A dditionally, we thank the D eutsche Forschungsgemeinschaft (Bonn, Germany, project Pi 135/12-1) for financial support and G. Fischer of our research group for the quantum chemistry and force field calculations.

References

1 M. L. Kopka and T. A. Larsen, in Nucleic Acid Targeted Drug D esign, eds. C. L. Probst, T. J. Perun, M arcel Dekker, N ew York, 1992, pp. 303-374.
2 S. N eidle, L. H. Pearl and J. V. Skelly, Biochem. J., 1987, 243, 1.
3 U. Pindur and G. Fischer, C urr. M edicinal Chem., 1996, 2, 325.
4 F. A carmone, S. Penco, P. Orezzi, V. N icolella and A . Pirelli, N ature, 1964, 203, 1064.
5 D. L. Boger, D. S. Johnson, W. Yun and C. M . Tarby, Bioorg. M ed. Chem., 1994, 2, 115.
6 U. Pindur, Cycloaddition Reactions of Indole D erivatives, in A dvances in Nitrogen H eterocycles, ed. C. J. M oody, JAI Press, Greenwich, 1995, vol. 1, pp. 121-172.
7 L. Pfeuffer and U. Pindur, H elv. C him. A cta, 1988, 71, 467.
8 U. Pindur, E. Gonzalez and D. Schollmeyer, J. Chem. Soc., Perkin Trans. 1, 1996, 1767.

9 U. Pindur and H. Erfanian-A bdoust, Chem. Rev., 1989, 89, 1681.
10 M . H aber and U. Pindur, Tetrahedron, 1991, 47, 1925.
11 U. Pindur and M. H aber, J. Prakt. Chem., C hem.-Z tg., 1993, 335, 12.

12 W. E. N oland, M . J. Walhstrom, M . J. K onkel, M . E. Brigham, A . G. Trowbridge, L. M. C. K onkel, R. P. Gourneau, C. A. Scholten, N. H. Lee, J. J. Condoluci, T. S. G ac, M . M . Pour and P. M . R adford, J. H eterocycl. Chem., 1993, 30, 81.

13 L. Pfeuffer and U. Pindur, H elv. Chim. A cta, 1987, 70, 1419.
14 U. Pindur, L. Pfeuffer, M. Eitel, M . Rogge and M. H aber, M onatsh. C hem., 1991, 122, 291.
15 U. Pindur, M.-H. Kim, M. Rogge, W. M assa and M. M olinier, J. Org. Chem., 1992, 57, 910.

16 C. A. G. Haasnot, F. A. A. M. De Leeuew and C. Altona, Tetrahedron, 1980, 36, 2783.
17 SYBYL version 6.03, 1993, program packet from TRIPOS A ssociates, Inc., St. Louis, M issouri, U SA
18 For details to the M OPAC 6.0 program (QCPE-455) 1990 see: M . J. S. D ewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. A m. C hem. Soc., 1985, 107, 3902; J. J. P. Stewart, J. C omp. Chem., 1989, 10, 209.
19 U. Pindur, M. Rogge, C. Rehn, W. M assa and B. Peschel, J. H eterocycl. Chem., 1994, 341, 981; M. Eitel and U. Pindur, J. O rg. Chem., 1990, 55, 5368.
20 RACCOON program was used, a variant of LAOCOON -program; H. G ünther, N M R -Spektroskopie, Thieme Verlag, Stuttgart, 1992, pp. 181.
21 D. P. Chakraborty and S. Roy, Fortschr. C hem. Org. N aturst., 1991, 57, 71.
22 M . Rogge, G. Fischer and U. Pindur, M onatsh. Chem., 1996, 127, 97. 23 C. Rehn and U. Pindur, M onatsh. Chem., 1996, 127, 631; 645.

Paper 6/08580F
R eceived 23rd D ecember 1996
A ccepted 18th February 1997

